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Lecture 24: Steady state LEQR and the S-procedure
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Lecturer: Laurent Lessard Scribe: Michael Shaham

This lecture covers the steady state LEQR and the S-procedure for determining when one set
described by a quadratic inequality is contained within another.

1 Steady state linear exponential quadratic regulator

Consider the linear system given by

xt+1 = Axt +But + wt

zt = Fxt +Hut.

We saw in Lecture 23 two different formulations of a robust optimization problem that trades off a
higher average cost for a lower variance. These two formulations are the linear exponential quadratic
regulator, given by

minimize
u0,u1,...,uN−1

γ2 logE

[
exp

(
1

γ2

N−1∑
t=0

‖zt‖2
)]

(1)

and the dynamic game formulation, given by

minimize
u0,...,uN−1

maximize
w0,...,wN−1

N−1∑
t=0

(
xT
t Qxt + uT

t Rut − γ2‖wt‖2
)
+ xT

NQfxN

subject to xt+1 = Axt +But + wt, t = 0, . . . , N − 1.

(2)

In both of these formulations, γ is a parameter that trades off between mean cost and cost variance.
We also learned that these two problems have identical solutions that can be found via dynamic
programming. The optimal controller for each of these finite-horizon robust control problems is
given by the recurrence relation

Pt = ATP̃t+1A+Q−ATP̃t+1B
(
BTP̃t+1B +R

)−1
BTP̃t+1A

P̃t+1 =
(
P−1t+1 − γ

−2I
)−1

Kt = −
(
BTP̃t+1B +R

)−1
BTP̃t+1A

ut = Ktxt

where Pt ≺ γ2I for all t.
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At steady state, this becomes

P = ATP̃A+Q−ATP̃B
(
BTP̃B +R

)−1
BTP̃A

P̃ =
(
P−1 − γ−2I

)−1
K = −

(
BTP̃B +R

)−1
BTP̃A

ut = Kxt.

(3)

where P ≺ γ2I. Why is this controller useful? We know that the LQR controller was also a
stabilizing controller (under closed-loop state feedback, the resulting system is stable, i.e., the
eigenvalues of A+BK are all of magnitude less than 1). For the infinite horizon LEQR controller,
we not only have a stabilizing controller, but we also achieve a root mean square (RMS) gain less
than γ. Recall that for a system given by

xt+1 = Axt +Bwt

yt = Cxt,

the bounded-real lemma states that

maximize
w0,w1,...

∑∞
t=0 ‖yt‖2∑∞
t=0 ‖wt‖2

< γ2

if and only if there exists P � 0 such that[
ATPA− P + CTC ATPB

BTPA BTPB − γ2I

]
≺ 0,

which occurs if and only if the following two conditions are satisfied:

ATPA− P + CTC −ATPB
(
BTPB − γ2I

)−1
BTPA ≺ 0 (4a)

BTPB − γ2I ≺ 0. (4b)

This follows from the fact that for block matrices, we have the Schur complement property[
A B
BT D

]
� 0 ⇐⇒ D � 0 and A−BD−1BT � 0

We will show that the infinite horizon LEQR satisfies the condition (4). Our system is given by

xt+1 = Axt +But + wt

zt =

[
Q1/2

0

]
xt +

[
0

R1/2

]
ut.

(5)

Note that with this system, we have

∞∑
t=0

‖zt‖2 =
∞∑
t=0

(
xT
t Qxt + uT

t Rut

)
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which is equivalent to the infinite horizon LQR cost. Our claim is that the LEQR controller for the
system given by (5) has squared RMS cost no greater than γ2, where γ is the parameter selected for
use in the robust control cost functions given by (1) and (2). The rest of this section is dedicated
to proving this.

Since K in (3) is a function of γ, lets define Kγ := K to make the notation more clear (we could
also use P̃γ and Pγ to make it even more clear, but we won’t do that). Since ut = Kγxt, (5)
becomes

xt+1 = (A+BKγ)xt + wt

zt =

[
Q1/2

R1/2Kγ

]
xt.

(6)

With this system, our “A” matrix is A+BK, our “B” matrix is I, and our “C” matrix is
[

Q1/2

R1/2Kγ

]
.

Substituting these in for A, B, and C in the two conditions given by (4), Eq. (4b) becomes

P − γ2I ≺ 0,

which is already a requirement for our controller given by (3), Eq. (4a) becomes

(A+BKγ)
TP (A+BKγ)− P +Q+KT

γ RKγ − (A+BKγ)
TP (P − γ2I)−1P (A+BKγ)

= (A+BKγ)
T (P − P (P − γ2I)−1P ) (A+BKγ)− P +Q+KT

γ RKγ

= (A+BKγ)
T (P−1 − γ−2I)−1 (A+BKγ)− P +Q+KT

γ RKγ

= (A+BKγ)
TP̃ (A+BKγ)− P +Q+KT

γ RKγ

= 0

where lines 2–3 follow from the matrix inversion lemma, lines 3–4 follow from the definition of P̃
in (3), and lines 4–5 follow from the algebraic Riccati equation in (3) but with Kγ substituted in.
The equality at the end actually indicates that γ is exactly the system’s RMS bound.

2 The S-procedure

2.1 The lossless S-procedure

The (lossless) S-procedure is used to determine if

xTP1x ≤ 0 =⇒ xTP0x ≤ 0 (7)

where P1, P0 ∈ Rn×n are symmetric matrices. Note that this is the only requirement—we make
no assumptions on the definiteness of these two matrices. We can also express this problem in a
different way by defining the two sets

S0 := {x ∈ Rn | xTP0x ≤ 0}
S1 := {x ∈ Rn | xTP1x ≤ 0}
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and then asking the question: “is S1 contained in S0?” or, equivalently, “is it true that S1 ⊆ S0?”.
Both S0 and S1 are cones. That is, they have the property that αx ∈ S for all x ∈ S and α ≥ 0.

If we can prove inclusion for cones, then we get inclusion for any set defined by a quadratic constraint
(i.e., possibly with linear or constant terms). To see why, consider the more general case

xTP1x+ 2qT1 x+ r1 ≤ 0 =⇒ xTP0x+ 2qT0 x+ r0 ≤ 0. (8)

We can write Eq. (8) as[
x
z

]T [
P1 q1
qT1 r1

] [
x
z

]
≤ 0 =⇒

[
x
z

]T [
P0 q0
qT0 r0

] [
x
z

]
≤ 0 (9)

The goal is to prove (8) for z = 1 and for all x. However, because the inequalities are homogeneous,
this is equivalent to having them hold for all x and z. So the problem of containment of shifted
quadratic forms is equivalent to the problem of containment of cones. See Fig. 1.

Figure 1: Illustration of a scenario where S1 ⊆ S0. Both sets are cones. If we slice
the cones, for example by intersecting them with the plane z = 1 as shown, we get two
ellipses that satisfy the same containment property.

Now, let’s try to find a sufficient condition: a condition that when true, proves that (7) holds.
Suppose there exists λ ≥ 0 such that

xTP0x ≤ λxTP1x for all x. (10)

Then (7) holds. Proof: Clearly, if xTP1x ≤ 0, then λxTP1x ≤ 0. Since xTP0x ≤ λxTP1x, we must
have xTP0x ≤ 0 when xTP1x ≤ 0, which gives us (7).

This condition generalizes to arbitrary functions, not just quadratics. Specifically: for any two
functions f : Rn → R and g : Rn → R, if there exists λ ≥ 0 such that g(x) ≤ λf(x) for all x, then
for any x satisfying f(x) ≤ 0, we must have g(x) ≤ 0.
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Now, if (10) holds, then we have xT(P0 − λP1)x ≤ 0 for all x, which implies that

P0 � λP1.

Thus, if we can find λ ≥ 0 such that P0 � λP1, then (7) holds. Note that P0 � λP1 is a linear
matrix inequality (LMI), and finding λ ≥ 0 that satifies this LMI can be formulated as a convex
optimization problem, specifically, a semidefinite program (SDP). However, for this to be even more
useful, we need to show the converse, i.e., we would like to show that our sufficient condition is also
a necessary condition for (7) to hold.

If we can show the converse, then we have that

xTP1x ≤ 0 =⇒ xTP0x ≤ 0

holds if and only if there exists λ ≥ 0 such that

P0 � λP1.

This is called the lossless S-procedure. It was easy to show the forward direction (sufficiency). The
reverse direction (that the condition is also necessary) is a bit more difficult to prove, and the proof
can be found in Prof. Lessard’s S-procedure supplementary note.

Note on non-convexity. Although Fig. 1 illustrates the case of convex cones in 3 dimensions,
the result also holds when the Pk matrices are indefinite, so the cones could be non-convex in
general, and far more complicated. The resulting sets Sk could also be non-convex, and possibly
even disconnected! (Imagine both sides of a cone, like an hourglass shape, and a plane that intersects
both sides of it...)

2.2 The lossy S-procedure

The S-procedure can be generalized to the following form: we would like to determine if

xTPkx ≤ 0 for k = 1, . . . ,m =⇒ xTP0x ≤ 0. (11)

The condition from the lossless S-procedure can be generalized to: if there exists λk ≥ 0, k =
1, . . . ,m such that

xTP0x ≤
m∑
k=1

λkx
TPkx for all x,

then (11) holds. This condition can also be formulated as the LMI

P0 �
m∑
k=1

λkPk,

and finding λ ≥ 0 to satisfy this LMI is again an SDP. However, the existence of λ ≥ 0 satisfying
this LMI is only a sufficient condition for (11) to hold, but it is not necessary (one can construct
counter examples for any m > 1 to show that the condition is only sufficient). This is known as the
“lossy” S-procedure.
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To summarize, let P0, P1, . . . , Pm ∈ Rn×n. Then

xTPkx ≤ 0, for k = 1, . . . ,m =⇒ xTP0x ≤ 0~ww� : “lossless”
~www : “lossy”

There exists λk ≥ 0 such that P0 �
m∑
k=1

λkPk.

The lossless case occurs only when m = 1, and the lossy case occurs for all m > 1.

2.3 Solving the lossless S-procedure using (convex) optimization

The lossless S-procedure seeks to determine if (7) holds. Consider the optimization problem

p? = maximize
x

xTP0x

subject to xTP1x ≤ 0.
(12)

This is a quadratically constrained quadratic program (QCQP). If p? ≤ 0, Eq. (7) holds, i.e., if
p? ≤ 0 we have xTP1x ≤ 0 =⇒ xTP0x ≤ 0. However, the optimization problem given by (12)
is, in general, nonconvex (it is convex if and only if P0 is negative semidefinite and P1 is positive
semidefinite). Typically, it is extremely difficult to find globally optimal solutions to nonconvex
problems. The S-procedure will show us that it is actually very easy to find globally optimal
solutions to this problem.

Let’s start by finding the dual problem for (12). The dual function for (12) is given by

F (λ) = max
x

(
xTP0x− λxTP1x

)
= max

x
xT(P0 − λP1x)x

=

{
0, P0 − λP1 � 0

∞, P0 − λP1 � 0.

Thus, the dual problem is
d? = minimize

λ
0

subject to P0 − λP1 � 0

λ ≥ 0.

(13)

This is a feasibility problem (any feasibility problem can be written as an optimization problem
with a constant objective). This is identical to the necessary and sufficient condition we found for
the lossless S-procedure: to show that (7) holds, we try to find any λ ≥ 0 such that P0 � λP1. If
such a λ exists, the solution to (13) is zero, i.e., d? = 0. Otherwise, we say the solution is infinity
(d? =∞), since the problem is infeasible.

From weak duality, we know that p? ≤ d? (note: this is the weak duality result for maximization
problems, whereas the weak duality we derived in a previous lecture was for minimization problems).
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To be more explicit, we have

p? =

(
maximize

x
xTP0x

subject to xTP1x ≤ 0

)
≤

 minimize
λ

0

subject to P0 − λP1 � 0
λ ≥ 0.

 = d?. (14)

We’ve already discussed how the solution to the dual problem is either zero or infinity, i.e., d? = 0
or d? = ∞. This is also true for the primal problem, i.e., p? = 0 or p? = ∞. To see this, first
note that we can lower bound p? by taking x = 0, so p? ≥ 0. Now suppose there exists a primal
feasible x such that xTP0x > 0. By positively scaling x by some constant α > 1, we maintain primal
feasibility and increase the objective function. Taking α → ∞, we then have p? = ∞. Thus, we
must have either p? = 0 or p? =∞.

Now, let’s consider the sufficient condition for the lossless S-procedure, which states that if there
exists λ ≥ 0 such that P0 � λP1, then xTP1x ≤ 0 =⇒ xTP0x ≤ 0. This is clearly portrayed in this
weak duality relationship. If there exists λ ≥ 0 such that P0 � λP1, then we have d? = 0. Since
p? ≤ d? and p? ∈ {0,∞}, we must have p? = 0.

On the other hand, if xTP1x ≤ 0 =⇒ xTP0x ≤ 0, then we have p? = 0. The lossless S-procedure
tells us that xTP1x ≤ 0 =⇒ xTP0x ≤ 0 if and only if there exists λ ≥ 0 such that P0 − λP1 � 0.
Thus, if p? = 0, we must have d? = 0, and strong duality actually holds here. Therefore,

p? =

(
maximize

x
xTP0x

subject to xTP1x ≤ 0

)
=

 minimize
λ

0

subject to P0 − λP1 � 0
λ ≥ 0.

 = d?. (15)

What (15) is telling us is that if we want to solve the nonconvex QCQP given by (12), we can
instead solve (13), which is a convex SDP. This is one of the few examples in optimization where
there exists strong duality between a nonconvex primal problem and its convex dual problem. This
result only holds for QCQPs with only a single quadratic constraint. If there are more quadratic
constraints (the m > 1 case), we lose strong duality. Even further, we lose strong duality if there
are any additional linear inequality constraints added to (12).

2.4 Application of the S-procedure: the Lur’e problem

Consider the closed-loop system given by

G

φ

yu

where G is your known system and φ is some nonlinearity. Now suppose we know that this nonlin-
earity belongs to some set S, i.e., we know φ ∈ S. We want to answer the question: given G and
φ ∈ S, where S known, is our closed-loop system guaranteed to be stable?
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A simple example of this is
xt+1 = Axt

where

A =

[
a11 a12
a21 a22 + ε

]
, |ε| < 1.

Typically, we can check stability by looking at the eigenvalues of A. However, there is now an
infinite number of possible versions of A, making this a more difficult task. In this case, it may
be possible to solve this algebraically, but for larger systems, this becomes infeasible. Further, in
this example, our closed-loop system still remains linear. The formulation above using φ is more
general, allowing for the closed-loop system to be nonlinear.

We will consider a class of systems where the nonlinearities are sector-bounded. Consider the graph
shown below.

u = αy

u = βy

y

u

A sector nonlinearity φ is any function that falls within the shaded region of this graph. Note that
this function can be arbitrarily complex, as long as it falls within this region. Thus, we want to know
whether our system is stable when the nonlinearity φ falls within this region. We can characterize
the region with a single quadratic constraint. Notice that

if y ≥ 0 then αy ≤ u ≤ βy,
if y ≤ 0 then βy ≤ u ≤ αy.

This can be combined into a single quadratic constraint given by

(αy − u)(βy − u) ≤ 0. (16)

To see this, note that if we subtract u from both inequalities, when y ≥ 0, we have βy − u ≥ 0 and
αy− u ≤ 0, and when y ≤ 0, we have βy− u ≤ 0 and αy− u ≥ 0. In either case, if we multiply the
two constraints together, the product must be zero or negative, which yields (16).

Now, to show our closed loop system is stable, we use Lyapunov theory. We want to find a function
V such that

V (xt+1)− V (xt) ≤ 0. (17)
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If we assume our system has linear dynamics given by

xt+1 = Axt +But

yt = Cxt

then we can try to find a quadratic function given by V (xt) = xTPx, P � 0 that satisfies the
Lyapunov decrease condition given by (17). Substituting all of this into (17), our Lyapunov decrease
condition becomes

(Ax+Bu)TP (Ax+Bu)− xTPx ≤ 0.

Our task is to prove that whenever φ belongs to the sector, the Lyapunov decrease condition holds.
In other words,

(αy − u)T(βy − u) ≤ 0 =⇒ (Ax+Bu)TP (Ax+Bu)− xTPx ≤ 0.

From the S-procedure, we know we can determine if this is true by finding λ ≥ 0 such that

(Ax+Bu)TP (Ax+Bu)− xTPx ≤ λ(αy − u)T(βy − u). (18)

Substituting y = Cx, Eq. (18) becomes quadratic in (x, u). Rearranging to put everything on the
same side of the inequality, we ultimately seek λ ≥ 0 and P � 0 such that[

x
u

]T [
ATPA− P − λαβCTC ATPB + λαCT

BTPA+ λβC BTPB − λI

] [
x
u

]
≤ 0 for all x and u.

Symmetrizing the quadratic form, this is equivalent to finding λ ≥ 0 and P � 0 such that[
ATPA− P − λαβCTC ATPB + λα+β2 CT

BTPA+ λα+β2 C BTPB − λI

]
� 0.

Note that all terms in this are linear in P and λ, so this is an LMI, and we can solve this using any
SDP solver.
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